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Abstract 

We prove a characteristic-free plethysm formula of the complex S&q for a map of finite free 

modules cp, We also study a family of subcomplexes of a Schur complex, the v-S&w complexes. 
Using these machineries from characteristic-free representation theory of general linear group, 

we give an example of determinantal ideal of generic symmetric matrix whose second Betti 

number depends on the characteristic of the base field. We also give a short proof of Kurano’s 
first syzygy theorem. 

1991 Math. Su& Class.: Primary 13C40; Secondary 13D02, 15A69 

0. Introduction 

Let R be a commutative ring with 1, and n a positive integer. Consider a polynomial 

riwS=RCxijllsisjrn over R in n(n + 1)/2 variables. Then we can form a generic 

symmetric matrix (Xij)l s i, j s n, where Xji = xij for i I j. Let t be a positive integer. We 
denote the ideal of S generated by all t-minors of (xij) by I,, and call it the determi- 

nantal ideal of the generic symmetric matrix (Xij). With letting each variable xij of 

degree one, the polynomial ring S is graded, and I, is homogeneous. 
As well as other homological properties, there has been much interest in finding 

graded minimal free resolution of S/Z, as an S-module. Kutz [19] proved that the ideal 
I, is perfect of codimension (n - t + l)(n - t + 2)/2 (i.e., grade I, = pd, S/Z, = 
(n - 1 + l)(n - t + 2)/2). It follows that if R is Cohen-Macaulay, then so is S/Z,. He 
also proved that if R is a domain, then so is S/Z,. It follows that S/Z, is a free R-module 
(this is true for R = Z, because each homogeneous component of S/Z, is a finitely 
generated torsion free Z-module, and the general case follows by base change). 
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Goto [S] proved that if R is a Krull domain with the class group C, then so is S/Z, 

with the class group CO2/22. Goto [9] also proved that S/Z, is Gorenstein if and only 
if IZ - t is even and R is Gorenstein. 

In [16], Jozefiak et al. determined Tory(S/Z,, S/S+) completely, provided R is a field 
of characteristic zero, where S, = I1 is the ideal of S generated by all variables xi? 
Note that the Betti number /?f = dim, Torf(S/Z,, S/S+) is the rank of the ith term of 
the minimal free resolution of S/Z,. 

As we mentioned above, the projective dimension of S/Z, depends only on n - t, and 

when II - t increases, then so does pds S/Z,. If n - t = 0, then I, is principal, and the 
resolution of S/Z, is obvious. For the case n - t = 1, the minimal free resolution of S/Z, 

over the ring of integers Z was constructed by Goto and Tachibana [IO] and Jozefiak 
[15]. The resolution is t-linear and of length three. Kurano [17] showed that when 
y1 - t = 2, the Betti number /?f is independent of R for all i. It follows that there is 
a graded minimal free resolution of S/Z, over Z this case [20]. The resolution is almost 
t-linear, self-dual, and of length six. There is no explicit construction of the resolution 

in the literature so far, but the method of [3] is applicable. 
However, the construction of minimal free resolution “over z” is not always 

possible. Using the characteristic-free representation theory of general linear groups, 
counterexamples on similar question on generic determinantal ideals [ 1 l] and Pfaff- 

ian ideals [ 181 were given. 
After these counterexamples, J. Andersen proved that the 5th Betti number of S/Z, 

depends on the characteristic when rr 2 7 [2]. She took advantage of the fact that S/Z, 

is a semigroup ring. She also proved that the 3rd Betti number of S/Z, is independent 
of the characteristic of R for any n. 

In this article, we make a representation theoretical approach to the resolution 
problem of S/Z, for arbitrary t. It seems to be impossible to apply semigroup ring 
approach to the case t > 2. Our interest is mainly concentrated into the lower 
syzygies, and we more or less mimic the method used in [13], which was effective to 

study the first syzygies of Pfaffian ideals. The basic idea is the use of plethysm formula 
in complex version. 

As a result, we obtained a first example of S/Z, whose 3rd Betti number depends on 
characteristic (Theorem 7.1). It is also another example of S/Z, without minimal free 
resolution over Z. It would be interesting to try to compute the increase of the 3rd 
Betti number at the smallest example - 3-minors of 11 x 11 matrix. The 3rd Betti 
number of this ring at characteristic zero is 3 100383. 

We also obtained a new proof of Kurano’s first syzygy theorem (Theorem 6.1), 
which states that the first syzygy module of I, is generated by degree t + 1 elements. 
Note that it follows that /?f is independent of R. 

In Section 1, we review some basic facts from characteristic-free representation 
theory. In Section 2, we prove characteristic-free plethysm formula in chain complex 
version. This generalizes the characteristic-free plethysm formula of SSzF [17,4] 
and DA2G [4] for finite free R-modules F and G. In Section 3, we introduce the 
notion of v-Schur complex, which is a free subcomplex of a Schur complex, and is a 
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generalization of t-Schur complex in [12,13]. Using plethysm formula, we prove that 
there is a spectral sequence whose El-term is a homology group of certain v-Schur 
complex of the identity map, and converges to [Torf (S/1,, S/S +)]j. Sections 4 and 5 are 

devoted to study homology groups of v-Schur complexes of the identity map. The 
contents of these sections are (more or less straightforward) generalizations of the theory 
of t-Schur complexes. The goal of these sections is a vanishing theorem Corollary 5.2. 

Utilizing the spectral sequence established in Section 3 and Corollary 5.2, we study 
lower syzygies of S/I, in Sections 6 and 7. In Section 6, we give a new proof of 

Kurano’s first syzygy theorem, which states that the first syzygy module of I, is 
generated by degree t + 1 elements. In Section 7, we give an example of I, whose 
second Betti number depends on characteristic. 

1. Preliminaries 

Throughout this article, R is a commutative ring with 1. The symbol 0 means the 

tensor product @a over R. We denote the set of positive integers, non-negative 
integers, integers and rational numbers by N, No, Z and Q, respectively. For a prime 
number p, we denote the prime field of characteristic p by IF,. The symbol IF,, stands for 
the field of rational numbers Q. For a set X, the cardinality of X is denoted by #X. 

For a positive integer n, the nth symmetric group is denoted by 6,. 
In this article, a “poset” stands for an ordered set (partially ordered set). For a poset 

P and its subset I, we say that I is a poset ideal of P if XE P, y~l and x I y together 
imply x E I. 

Let F be a finite free R-module and i 2 0. We denote by SiF (resp. fi\‘F, DiF) the ith 
symmetric power (resp. exterior power, divided power) of F. The symmetric algebra 
(resp. exterior algebra, divided power algebra) of F is denoted by SF (resp. l\F, DF). 
For a map of finite free R-modules cp : G * F, the ith symmetric power (resp. exterior 
power) of cp is denoted by Siq (resp. r\icp). The symmetric (resp. exterior) algebra of 
cp is denoted by Sq (resp. A cp). For a finite free R-complex 

of length at most two, we denote the ith symmetric power (resp. the symmetric 
algebra) of cx by SiCl (resp. Sa). For these multilinear objects, we refer the reader to 

[IL 141. 
In this paper, these multilinear objects will be considered in the category of 

bigraded R-modules Gi or in the category of graded R-complexes %? as in [12-141. In 
particular, the definition of “bialgebras” is slightly different from the usual one (only 
by sign, in some sense). See [ 14, Chapter I] for details. For an object C E % and n E Z, 
we define C[n] by C[n]i,j := Ci,j+n and 8Frn1 := (- l)“aF+,. 

The algebras SF, l\F, DF, Scp, /j\‘p and Sa have bialgebra structures. See [14, 
Chapter I] for details. 
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Let B be an R-algebra. The multiplication map BOB -+ B is denoted by mB. If there 
is no danger of confusion, it is simply denoted by m. 

For an R-coalgebra A, we denote the coproduct of A by AA or simply by A. If A is 
a bigraded R-bialgebra, the composite map 

is denoted by I& or simply by c], and called the box map of A. 

A row-sequence is an infinite sequence of non-negative integers, say 

A = (A,, 12, 13, . . .I, such that li # 0 for only finitely many i. If ;li = 0 for i > r, then we 
may write ;1 = (Al, &, . . . ,A,.). Addition (or subtraction) of two row-sequences, and 
scalar multiple of a row-sequence is defined as those of vectors. We denote the 
row-sequence (ail, C?i*, . ..) by Ei for i 2 1, where 6 is the Kronecker’s delta. We define 
Cl; = Ei - Ei+ 1 for i 2 1. Note that Cli is not a row-sequence. A partition is a weakly 
decreasing row-sequence by definition. 

For two row-sequences 1 and p, we say that 13 p when Ai 3 pi for i 2 1. We say 

that R t p when Cj= i3Lj 2 Cl= l,Uj for i 2 1. We say that R > p when there exists some 
i 2 1 such that lj = pj for all j < i and that 1i > pi. It is easy to see that we have 

Note that the order 2 is a total order on the set of row-sequences. 
A relative row-sequence n/,u is a pair of row-sequences (2, ,u) such that 1 1~. We 

may write simply I instead of A/O, where 0 = (0, 0, . . .) is the zero partition. The 
diagram A,+ of 1/p is the subset 

{(i,j)EN’lpi <j I li} 

of N2 by definition. If both J and ,U are partitions, then ~/,LL is called a skew partition. 

The degree of a relative row-sequence n/p, denoted by [~/PI, is #Al,,, by definition. 
The length of n/p, denoted by 1(1/p) is 

max({O}u{iEIVIAi > pi}) 

by definition. 
Let cp : G + F be a map of finite free R-modules, and n/p a relative row-sequence. 

We define 

We denote by Ln,,,F (resp. Ln,,p) the Schur module of F (resp. the Schur complex 
of cp) with respect to n/p. For t 2 0, the t-Schur complex of cp with respect to A/p is 
denoted by L,, a,p’p. For the results, notation and terminology related to these objects 
(such as standardness of tableaux, standard basis theorem) and other related (un- 
explained) notation and terminology, we refer the reader to Cl, 14, 121. 
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However, we use one diflerent notation. The complex A,, l,l,r cp in [12] is denoted 
simply by At, n,p cp in this paper, and A t,a/p~ = Cilh\t,i,A/p(P in [12] willnever be 
in this paper. This notation is the same as that in [13]. 

Let $: G’ -+ F’ be a map of finite free R-modules, too. In [14, Chapter 
a coalgebra homomorphism 

@(cp?$):A\cpo ti-S(cpO$) 

is defined. The map 0 is uniquely determined by the property: 

The map O((p, $) depends only on F, G, F’ and G’, and is a universal 
natural transformation on F, G, F’ and G’. It is a homomorphism of 
coalgebrasinCe,and81,1,.*,1,:~1\’cpO~1*=cpO~~cpO~=S1(cpO*) 
is the identify. 

We call 8 the generalized determinant map. 

used 

m 

(1.1) 

We recall that the restriction of 8 to fl F @ Aj G is zero when i # j, and it is given by 

O(,fi A ... r\hOgi A .” A gi) = (- l)i(i-l)‘z det(f,@g& sa,Psi (1.2) 

forfr ,..., fiEFandy, ,...) giEG,wheni=j. 

2. Generalized plethysm formula 

In this section, we prove a generalization of the plethysm formula of S&F for 
a finite free R-module F [ 171 to the chain complex version. The generalized version is 
also a generalization of the plethysm formula of DA2F [4]. The proof is similar to that 

of the generalized plethysm for pfaffians [13]. 
Let cp : G + F be a map of finite free R-modules. Then, the complex S,cp is of length 

(at most) two, and is of the form 

So we obtain the symmetric algebra SS2q of S,cp. We denote the composite map 

by e, where m: cp @ cp --f SZcp is the multiplication map (note that S(?) is a functor). 
Since 8 and Sm are coalgebra maps, so is 8 The restriction of e to A’cp@ K cp is 
denoted by i?,.. 

Lemma 2.1. Let 0 < k I Y. Then, we have the composite map 

A*‘“(,,o~-~(,,“:::lL;‘~,@/\,, 5 S,(S2(p) 

is zero, where q CI,I, (*+k.r-k) is the box map (see [12, Dejinition 1.1.21 for definition). 
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Proof. As the maps in consideration are universal (i.e., compatible with the base 

change) and defined over an integral domain of characteristic zero, we may assume 

that S&(p) is cogenerated by S2(p (see [13, Section 23). 
First, we have that two coalgebra maps 

~\cpO/W&%Y) 

and 

el:/j\Q/jq -5 A cp 0 A cps S(SZ(P) 

agree, where 0 = (1 @m) 0 (A@ 1) is the box map. To verify this, we only have to 
check it at the degree 2 component (with respect to the naive grading) since S(S2q) is 
cogenerated by its degree 2 component SZcp, In fact, the two maps are zero on 

A’cp @/\O cp and on ,ja cp Or\” cp, while they are the multiplication of S~J over 
r\’ (PO/~’ cp = cp@ cp. As the map in the lemma is an appropriate component of the 
zero map e’ - e, the assertion follows. 0 

Using a similar argument, we also have 

Lemma 2.2. The composite map 

I\I~OI\I~~~*(PO~I~~S(S2cp) 

agree with I?, where T is an appropriate twisting (for dejnition, see [14, p. 61). 

Let /z = (A,, . . . ,A,) be a row-sequence (i.e., a sequence of non-negative integers). 

Then, we denote the row-sequence 

(&,4,&, A23 . . . > A> 4) 

(obtained by repeating each term of 1 twice) by 2. 
For a row-sequence A, we denote the restriction of the composite map 

(AV4@ . . . @(~$4~~~S(S2~)@ . . . os(s2(P)“s(s2(P) 

on 

Definition 2.3. Let r 2 0. For a partition A of degree r, we define 

Lemma 2.4. M,,.,(8) = S,(Sz(p). 
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Proof. (By induction on r). The assertion is obviously true when Y I 1. Consider the 
case r 2 2. As S(S*(p) = S(S,F)@ A(F@ G)@D(A2G) and the algebras S(S2(p) and 
l\(F@ G) are generated by their degree one components, we may assume that F = 0 
by induction assumption. 

Thus, what we want to prove is M,iPj(f?) = D,(r\” G) when F = 0. But we know that 

McIP,(H) = D,.(G@G) (see [14, Lemma 111.2.5]), where 

for a partition i of degree r. As m: G @ G -+ r\” G is a split epimorphism, so is 

D,.m : D,(G 0 G) -+ D,( /\’ G), and the assertion follows. 0 

Lemma 2.5. Let r 2 0. Then, we have 

rank,(S,(S,cp)) = 1 rank, Ljcp 

where the sum is taken over all partitions of degree r. 

Proof. Similar to [13, Lemma 3.81, and we omit it. 0 

Theorem 2.6. Let r 2 0 and A be a partition of degree r. Then, there exists a unique 

isomorphism 

yJ, : L# + M&J/i&@) 

such that the diagram 

A;cp----+ ” M,(g) 

4 
1 I 

L; cp 1/A- M&)/A&(@ 

is commutative. So S,(S2(p) is isomorphic to @ll,=,.L,-cp up to Jiltration. 

Proof. To see that yn is induced, it suffices to show that the image of the composite 

map 

is contained in hi,(g) for any PE&(;~) (see [12, p. 4621). We may write p = 2 + korl 
(k, 1 > 0). 

When 1 is odd, then we may assume that 1 = 1, and this case is reduced to Lemma 
2.1. When 1 is even, then we may assume that I = 2, and 2 = (Ai, 1,). Then, the 
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composite map 

agrees with the composite map 

by Lemma 2.2. By [14, Proposition 111.2.61, its image is contained in tiA(0), as 
desired. 0 

3. v-Schur complex and determinantal ideal 

As in the previous section, cp: G --) F is a map of finite free R-modules. For 

Y 2 k 2 0, we denote the truncated subcomplex 

O-,l\kFOD,_kGj~+lFODr_k-lG~ ... -,I\*-lF@G+I\‘FjO 

of l\*cp by Akk,‘cp. For row-sequences p c y c 5 we define 

A 
y,Ilp(p := /jVPI.Il-lcl (pQ~2-P2,AZ-112(PO~3-P3,13-_p3(P0 . . . 

so that ln\*,n/,,(~ in Cl31 is A\P+t6,,~/P~. 

Definition 3.1. Let A/p be a relative row-sequence, and v a row-sequence. We denote 

the subcomplex 

by /r\kV,A,p cp, where the sum is taken over row-sequences y such that p c y c i and 
that y t v. Assume moreover that n/,u is a skew-partition. We call the complex 
dn,r(l\2v,i,p cp) the v-Schur complex of cp with respect to the skew partition A/p, and 
denote it by L,,A,p q. 

By definition, L,,l,, cp = 0 unless v 5 ;1. Note that the t-Schur complex L,,A,p cp 

[12, 133 is nothing but Lp+tE1,AIP~. We fix bases X = {xi < ... < xm} of F and 
Y = {yi > ... > yn) of G, respectively. We let X < Y so that 2 := XuY is a totally 
ordered set. For a relative row-sequence (resp. skew partition) n/p, we denote the set of 
row-standard (resp. standard) tableaux mod Y of shape n/p with values in 2 by 
Rowl,,(Z, Y) (resp. St,,,(Z, Y)) (see [14, Section 1.31). For SEROW~,,(Z, Y) and 
a poset ideal I of Z, there exists a unique row-sequence y such that p c y c A and that 
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S- ‘(I) = AAiP. We denote this y by y(S, I). For two tableaux S, S’ E Row(Z, Y), it holds 
S I S’ if and only if y(S, I) 2 y(S’, I) for any poset ideal I of Z (see [12, p. 4611). 

For a relative row-sequence i/p and a row-sequence v I p, we set 

Row >v,~,p(Z, Y) := {SER~~A,JZ, Y) IY(& W 2 v}. 

Note that SE RowAlp(Z, Y) is contained in /&, i,a cp if and only if S E ROWE,, n,p(Z, Y). 
It is easy to see that Row~,.~,~(Z, Y) is a free basis of Akv,n,,,~. 

Lemma 3.2. Let A/u be a skew partition, and v a row-sequence. The set 

St,,,& Y) := Row>v,n,JZ, Y)nSt,,@, Y) 

is a free basis of the v-Schur complex L,, i,p cp. In particular, L,, i,p cp agrees with the sum 

1, dA‘lU(Aj,,Al,, cp) with sum taken only over all partitions such that u c y c A and that 

1’ t 1’. 

Proof. The first assertion immediately follows from [12, Lemma 1.1.11, as the subset 
Row kV,Ilp(Z, Y) is a poset ideal of Rowljp(Z, Y). For any element S in St,,,,,(Z, Y), 

y(S, X) is a partition. The second assertion follows from this. 0 

Lemma 3.3. Let A/p and v be as above. Then, one of the following hold. 

1. v $A. In this case, we have L,,n,P cp = 0 for any cp. 

2. There exists a unique partition p such that p c p c A and that it holds ‘/ t v if and 

only if y t p for any partition ; such that n c y c i. In this case, we have 

Lu.j./fi cp = LP.~~B cp for any Vo. 

Proof. If there are i andj such that i < j, ui > Vi and pj < vj, then we take such a pair 

(i,j) such that j - i is small as possible. Then we may replace v by v’ = v + si - sj in the 
sense for any row-sequence y I p, y 2 v if and only if y 2 v’. This replacement step 
cannot be continued infinitely, so we may assume that there is no such a pair (i,j). 

Thus, there exists some r 2 0 such that 

(Pl, .” ,I**) = (Vl, ‘.. ,v,) 

and that 

(Pr+l, Pr+z, ‘.. 1 = (v,+1, vr+z, ..’ 1. 

Then we may replace v by (vr , . . ,vr, ~,.+~,p,+~, ) in the sense above, and we may 
assume that v II p. 

If there is i and j such that i < j, ;li > vi and pi < Vj, then we take such a pair (i, j) 
such that j - i is as small as possible. Then we may replace v by v’ = v -t- si - sj in the 
sense for any row-sequence y c 2 it holds y t v if and only if y 2 v’. Note that the 
condition v 3 p is preserved by this replacement. 
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This replacement cannot be continued infinitely, so we may assume that there exists 

some r 2 0 such that 

(A 3 ‘. . 3 4) = (VI 9 . . . 9 b) 

and that 

@,+1, A+22 ‘..) = (v,+1, v,+z, ... ). 

Now if v $1, then the condition 1 holds. So we may assume v $1. By the condition 
above, then it holds that ~1 c v c 1. 

If there exists some i such that vi < vi+ r, then we take the minimum i among such, 

and replace v by v’ = v + ai in the sense for any partition y, y 2 v if and only if y 2 v’. 

Note that the condition p c v c 1 is not violated with this replacement. This replace- 
ment step cannot be continued infinitely, and we may assume that there is no such an 
i, namely, v is a partition. Now p = v is the desired partition. The uniqueness is 
trivial. 0 

By the lemma above, the assumption v is a partition such that p c v c i is not 
a serious restriction when we consider L,, .1/p cp. For a skew partition A/p and a row- 

sequence v with v 5 1, we denote the partition p in the lemma by p(;1/~, v). 

We set S = S(&F). Then, the complex S(S2q) = S@/j(FOG)@D(/j’G) is 
a graded S-free complex with letting S,(S2q) of degree r. Let I, be the determinantal 
ideal (of S) generated by all t-minors of the generic symmetric matrix (xi x Xj)l s i, j s ,,,, 

where x is the multiplication in SF (so that each xi x xj belongs to SZE c S(S,E)). 
In other words, I, is the ideal of S generated by @(A,,,,,F). The complex 
9 = P(q) := I,@sS(&cp) is an S-graded subcomplex of S(S,rp) in a natural way, 

whose degree r component is denoted by P*((p) or Pr. 
We are mainly interested in the case G = F and cp = idF. 
We define a chain map rc : SzidF + ids,F as follows: 

S2(idF): 0 2 A --+A F-F@FAS2F-0 

idSzF: o-o- S2F L, S2F--+ 0 

Lemma 3.4. The map 

10 Sn : 9’(idF) = I, OsS(S2 idF) + I, OS S(id,,,) 

is a quasi-isomorphism of GL(F)-equiuariant graded S-complex. 

Proof. Similar to the proof of [13, Lemma 7.11, and is left to the reader. lJ 

By the lemma, we have an isomorphism 

Hi(X’T’(id,)) E [Tort+ 1 (S/I,, S/S+)]j (3.1) 
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for i, j 2 0, since S(id,,,) is nothing but the Koszul complex K,(xi x Xj; S), which is 
a free resolution of S/S+ = R. Here S+ = (Xi x Xj 1 1 I i, j i m). S, and [J denotes the 
degree j component of a graded S-module. 

Now we return to the case of general cp: G -+ F. 

Definition 3.5. Let r 2 0 and t 2 1. For a partition A of degree r, we define 

Q*,n(@) := c & A 
P>ir.Ifll=l 

( kvCt,P,. p V)? 

where v(t, p) is the smallest two-rowed partition of degree pi + t (in other words, the 

partition (~1 + t - Cb + WI, [(PI + 1VW 

It is clear that hi,,n(B) c M,,n(B). By [14, Lemma IV.1.71, we have M,A c P” for 
any R. By definition, 9’3’ is the image of multiplication map P’@S,_,(S2q) - 
S,(S2(p). It is easy to see that P* = I,, t = M,, ,,,(8), where I,, f is the degree t component 
of I,. Hence, we have Mt,C,,lP--r, = 9’~~ so that 

Pr = M,,(,, I*-‘) 3 ... I> M*,c,, 2 0 

is a filtration of Y’,*. 

Lemma 3.6. Let p = (pl, p2), v = (vl, v2) and A = (A,, A,) be two-rowed partitions such 

that p c v c 1. If v1 2 ,X2, then we have 

Im q Liunl\kv, 2h cp = 

Proof. We set t = v1 - pl. 

Im •GA~,~,~‘P = 
k’wi -rz \ / 

Truncating the complexes of both-hand sides at degree Iv/pi, we obtain the desired 
equality. 0 

Lemma 3.7. Zf JAI s 2t, then we have 

~,,A@ = fil(@nM,A(Q. 

In particular, we have an isomorphism 

I/t,A:L(,,n,cP + M,A(@l&(Q) 
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which makes the following diagram commutative: 

In particular, ifr < 2t, then P’ is isomorphic to @,r,=r L .cr,n,,i:~ up to jltration. 

Proof. Note that yn : L;:q --+ MA/&IA (see Theorem 2.6) maps 

L,(~,n),i:~ = d;l(/&,,,,,,~) 

isomorphically onto 

@A (A_ >v(t,i),i ~1 + ~A)/~, = Of,,, + fi,llfi,. 

If hj,,~. = hj,nM,,,, then we define yr,i to be the composite isomorphism 

and the rest of the assertions follow. 

So it suffices to prove hj,,, = hilnM,,2.. The direction c is clear. We prove the 

direction 2 . By Theorem 2.6, it suffices to prove 

QA Ker dxn/jk,,(t,iJ,;cP = fit,,. 
( ) 

By [13, Lemma 7.51, the left-hand side is equal to cf$i E(i), where 

E(i) = Bn (( C Im •j+k”f)n/&Aj,~. q). 
k>O 

What we want to prove is that E(i) c hi,,, for i 2 1. By Lemma 2.1, E(i) = 0 for 

i odd. So we may assume that i is even. Clearly, we may assume that A1 2 t. In this 
case, we have ii 2 i, + A3 + ... So the case i 2 4 is almost trivial. So we consider 
the case i = 2, and in this case, we may assume that l(A.) = 2. Note that we have & I f. 
By [13, Lemma 7.41, we have 

E(2) = V,,,,,,“,,,,,,,, & sm~~(/\~~,~~~~~(~~~+k~~+k~~~)))~ (3.21 

where Sm: S(cp 0 q) + S(S2(p) is the map induced by the multiplication 

m : cp @ cp -+ S2(p. By [14, Proposition III.2.6], we have 

‘i 
( 

,,,‘,,n’P@ q 2 
( 

/\y>+k,I+kor, q 

)) ( 
= 8i /,y,,l+kal (P@/,y2+k,jt+ka, q 

) 
(3.3) 
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For any ‘/ such that v(t, A) i y c (Ai, A”,) and k > 0, we have yi + (y2 + k) 2 

t + (2, + k). So we have (yr, y2 + k) t v(t, 1 + kal) or (y2 + k, yl) t v(t, 1 + kcc,). This 
shows that 

and we have E(2) c hj,,, by (3.2) and (3.3). 0 

4. Homology of v-Schur complexes 

Let cp: G + F and 2 = Xu Y be as in the previous section. In this section, we 

assume that m, n 2 1, q(yJ = x1, and that cp(G,) c F,, where Fi (resp. G,) is the 

R-span of X1 = {x2, . . . ,x,} (resp. Yi = {yZ, . , y,}). Thus, cp = idR@ cpl, where 
(pi : G1 + F1 is the restriction of cp to Gi. 

Definition 4.1. Let s, I, s’ and I’ be non-negative integers, n/p a relative row-sequence, 
and v a row-sequence. We define 

B’,“.‘(@P) := (S~Row~,p(z> Y)/v&, (xi, YI>) = s, ~~1. ,q(K {VI)) = O> 

and 

B -y”‘*“(%/p) := (Sdy(l//L)lVi,, .I,(s,(xl>) 2 s’>, 

where 

vf(S, W) = #{(i,j)~dli,Ji~Z, S(i,j)EW) 

for a set U, I c N, S E Tab,,,(U), and W c U. We define X,S*‘(l/p) (resp. r?;9’9s”“(1/p)) 
to be the R-span of &‘(jl/p) (resp. &l*s’V” (d/p)) in /\kV,A,P(p. When 1 and p are 

partitions, then the image dnjr (r?:‘(A/p)) (resp. dn,,(~~.‘,S’,“(~/~))) is denoted by 
X;.‘(J/p) (resp. X~*‘~“‘~“(n/~)). 

Note that &‘@/p) = @*‘*‘*” so that x$‘(&p) = 8,S”90*f’(,J/p) for any s, 1 and I’. 
It is easy to see that -J?yS”sS’,i’ (J/p) is a free subcomplex of /jkV,iic cp. 
Note also that 8,S*‘V”‘*“(1/p) and X:V*V”‘9”(n/p) are natural generalization of 

P,s’7” (n/p) and XS,‘,“,” (A/p) [13, Section 21, respectively. The following lemmas are 
natural extensions of the results in [12, subsection 2.21 or [13, Section 41. Almost all 

proofs are omitted, as they are obvious generalizations. 

Lemma 4.2. Let s, 1, s’ and 1’ be non-negative integers, A/p be a skew partition, and 
v a row-sequence. Then we have: 

l. L,,j./p Cp = es2 0 xE’O(n/PL). 
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2. For each s, s’ and 1’, we have a filtration 

X”9 O,s’, I’ (1,/u) x X:% l.S’, 1’ (Alp) I> . . . 3 xys’uw~‘~ I’ (Alp) 3 0, Y 

3. For any s, 1, s’ and I’, X,S*‘V”‘9” (A/u) is a free subcomplex of L,,+ cp with a free basis 

B sy,‘,“,” (A/p) := dnjp (Stnip (Z, Y )&sy(““.” (A/p)). 

It’s underlying module is universally free on FI and G1. 

Lemma 4.3. Let s, 1, s’, l’, v and ,IJp be as above. Then we have 

1. Ifs = 0, A1+1 = Alf2 or ,&+1 = ,aLI+l, then X~“*S’S”(A/p) = X,S9”‘7S”“(;llp) 

2. Ifs > 0, A,,, > i,,, and i ,+ 1 > ,ul+ 1, then we have the exact sequence 

0+x y+lJ’J’(,/,) $ ,~I,,,.l,(n/~)“:“txs,-l,1,“‘.“((~ _ El+l)/p)[_ 11 __+(), 

where 1 is the inclusion map, and II,“” is the map induced by the map 

~~,‘(~/11):8~‘,s’,“(n/~) -+ Jz-l,t,“‘S”((A - &t+J//t)[- l] 

given by 

f?;qn/p)(s) = 
(- 1)V. J+l)(S9Y)S (if s(n + 1,Al.J = y& 
o 

(otherwise) 

for SEB”S,.l.“‘J (A/,u) (the sign choice in the definition of t$* in [12, p. 4691 is 

erroneous). 0 

We denote XySV’(“p),s’, ” (A/p) by X;, m,s’, “(A/p). 

For a skew partition A/p, we set 

r,(A/j~) := {y : partition 1 p c y c 1, y/p: a vertical s-strip}, 

and 

ri” I’ (A/p) := 
i I 

y E rs (A//L) i (yi - /Ai) 2 S’ . 
i=l I 

For y, y’ E T,(A/y), we say that y 2 s’,l. y’ when 
1. y E I$*” (A/p) and JJ’$~:‘, ” (A/,u) or 
2. Condition 1 does not hold, and y 2 y’. 
The relation 2 s,,l, is a total order, and is compatible with the order t. Hence, when 

we set M”,‘,“(y) = I,, >., I, y Im Q we have 

X,s, co,s’,l’ (VP) = M$“(YO), 

where y. is the smallest element of ri’,“(A/p), and 

E’y, : AY’llc R @ /j”,l,)’ q71 + x;, “~“‘*“(n/p) 

is as in [ 12, p. 470, 13, Section 41. 
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Lemma 4.4. {MSy)“’ (y)}ysT:..~(l,pj is aJiltration of!fxf: a*s’,r (/I/p) whose associated graded 

object is 

Lemma 4.5. Let n/n be a skew-partition with 1 = 1(1/p) 2 2. Assume that Jr - u1 = 1, 
and s’ = pAI. Then, for any s 2 0 and a partition v such that n c v c E, and that vt = ul, 

the inclusion map 

is a quasi-isomorphism. 

Proof. As in the proof of Lemma 4.3 of [ 131, the cokernel of the inclusion map agrees 
with the exact complex LA,, idR @ XSy’s’-‘,n;,s’,s’s’-‘(~~Iy), where 

5. A vanishing theorem 

In this section, we prove a vanishing theorem of the v-Schur complex of the identity 
map. The theorem is a natural modification of [13, Theorem 4.41, but not a generaliz- 
ation. The idea of the proof of the theorem is the same as that of [13, Theorem 4.41, 

but we give a proof here for completeness. 
In this section we consider idF : F’ + F, where F and F’ are free R-modules of rank 

IZ with ordered bases X = {x1 < ... < x,} and X’ = {x’, > ... > xh}, respectively, 
and the map idp is given by idF(x:) = xi for 1 I i I n. We assume that n 2 1 unless 
otherwise specified. With letting G = F’, Y = X’, Xl = {x2, . . . ,x,} and 
Y, = {xi, . . . ,xk}, we use the notation and terminology defined in the previous 
section for cp to our idF freely. In particular, we consider X < X’ when we consider 
standardness of tableaux. We denote the R-spans of X1 and Y, by F, and F;, 

respectively. The restriction of idF on F; is denoted by idF,. 
Let n/p be a skew partition, and v a row-sequence such that v 5 J_. We set 

p = p(l_/p, v), and we define a(/Z/n, v) = 1(,%/p) - l(p/p) - 1. When v $)., we define 
a(n/p, v) = a, as a convention. 

Theorem 5.1. Let R/p be a skew partition, and v a row-sequence, and i, s, 1 2 0 with 

1 < l(jJu). Then, we have Hi(Xt:t(1/n)) = 0 for i I a($~, v). In particular, we have 
Hi (Ly, ii,, idF) = 0 for i I u (i/u, v). 

Proof (Double induction on n = rank F and l,I/,tl). Note that the first assertion in the 
theorem does not make sense when n = 0, but the second statement does, and it is 
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obviously true (we use this in the induction argument when n = 1). We may assume 
that v 4 2 and v = p(;l/p, v). Thus, v is a partition such that p c v c 2. We may 

assume that s > 0, by induction assumption on n. We proceed by reverse induction on 

1. First, note that we may assume that vIC1/,) = p1(2jp), or equivalently, u(~/P., v) 2 0. 
Case a. First, consider the case 1 = 1(1/p) - 1. Note that we have v c 1 - sl+ i. By 

Lemma 4.3, we have an exact sequence 

o~x~uo(n/~)~x”,“(~/~)-x;-‘,‘((n-&l+l)/~)[ - 11-O. (5.1) 

We consider the case A,+, - pl+ 1 2 2. In this case, we have a ((A - Q+ J/p, v) = 

a(n/p, v). So, Hi(X”,-“‘((A - E~+~)/P)[- l] = 0 for i < u(A/,u, v) + 1 by induction 
assumption. On the other hand by Lemma 4.4, X: m (n/p) admits a filtration whose 
associated graded object is &T,(I/~) LVql,, idF. Since we have a (n/p, v) I a (1/y, v) for 

each gamma, we have Hi(X: m (n/p)) = 0 for i I a (A/p, v) by induction assumption. By 
the exact sequence (5.1), we have Hi(X”,.‘(A/p)) = 0 for i I u(A/,u, v), as desired. 

Now we consider the case A[+ 1 - pl+l I 1. In this case, we have ll+i - pl+l = 1, 

since 1 + 1 = 1 (A/p). Assume that p1 2 A1 + i. Then {(I + 1, A[+ 1)} is one of the connec- 

ted components of AllP (see [12, p. 471]), and in this case, we have 

Hence, Hi (X:’ (n/p)) = 0 for any i 2 0 this case. So we may assume that pl = pul + 1. By 
Lemma 4.5, X:‘(n/p) is quasi-isomorphic to X”y.‘,“‘*“@/~), where s’ = $l+1 and 
a = s + s’ - 1. By Lemma 4.3, we have an exact sequence 

For any y E~$‘~@/P), we have l(A/y) = 1 + 1, as (1 + 1, J.,+ i)~ Al,,. By induction 
assumption and Lemma 4.4 we have Hi(X: co,“,’ (,?/,u) = 0 for i I a (A/p, v). Moreover, 

we have l((/z - Ed + Jy) = 1 for any y E r;i’iu, ((2 - E~ + J/J), as (1, A1 + 1) E AtA -El+ ,),?. This 
shows that Hi(X”,- l,m,s’,a((A - E*+ J/p) [- l] = 0 for i I a(A/p, v). By the exact 

sequence (5.2), we have Hi(X~‘,“‘,“(1/‘~)) = 0 for i I u(A/p, v), as desired. 
Case b. Now we consider the case 1 < 1 (A/,u) - 1. We may assume that A,+ 1 > 

iI + 2, pl + 1 by Lemma 4.3. By the same lemma, we have an exact sequence 

0 -+x;‘+ 1 (~~/~)-x~‘(~/~)~X~,~l,l((~-E~+l)/~)[- 11-O. 

So, by induction assumption on 1, it suffices to show that Hi(X”,- ‘,‘((A - E[+ I)/ 
11) [- 11) = 0 for i I u(A/p, v). By induction assumption on IA/PI, it suffices to show 
that a((1 - Q+ l)/p, v) 2 a@/,~, v) - 1. But this is trivial, as l((A - q + I)/p) = 1(1/p) 

and l(p((l - Q+ J/P, v)/P) I l(vl,4, unless v $1 - Ed+, This completes the proof of 
the theorem. 0 

Corollary 5.2. Let A be a partition of length 1, and t 2 1. Then, we have 

Hi(L vCt,lJ,;idF) = Ofor i _< 21 - 3. 
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6. The first syzygy 

As a first application of Corollary 5.2, we give a new proof of Kurano’s first syzygy 
theorem. 

Let idF: F’ -+ F be as in the previous section. As in Section 3, S denotes the 

polynomial ring S(S2F) g R [Xi x Xj]l c i <, s n, and I, denotes the ideal of S generated 

by all t-minors of the symmetric matrix (xi x xi). 

Theorem 6.1 (Kurano [ 17, Corollary 5.53). Tar: (S/Z,, S/S +) is concentrated in degree 

t + 1. Or, equivulently, the relation module of I, is generated by degree t + 1 elements. 

Proof. It suffices to prove that Tj := [Tar: (S/Z,, S/S+)]j = 0 forj # t + 1. Note that 

Tj is the homology group ZZ1(Yt*j) of the R-free complex Y’*j by (3.1). As H,(Y’,j) is 
R-free for anyj, we may assume that R is the ring of integers Z by universal coefficient 
theorem. Again by universal coefficient theorem, we may and shall assume that R is 
a field. It is clear that Tj = 0 for j I t, as I, is generated by degree t-elements. 

As I, is minimally generated by a Grobner basis of I, with respect to an appropriate 

monomial order [6], we have Tj = 0 for j > 2t by Buchberger’s theorem (see, e.g., 

C5,71). 
Thus, we may assume that t + 2 <j I 2t. In this case, by Lemma 3.7, there is 

a spectral sequence converging to [Tori(S/Z,, S/S+)], whose El-term is 

H,(L vU,lJ,;idF) for various J. with li1 = j. Thus, to prove that Tj = 0, it suffices to 

prove that HI Wvct, A), r idF) = 0 for all partitions 3, with Ii1 = j. If Z(1) 2 2, then this 

follows immediately from Corollary 5.2. If >_ = (j), then the complex L,,,,,,,iid, is 
obtained by truncating the homotopically trivial complex LiidF at degree j - t. 

Hence, we have Hi(L,(,, i,,;id,) = 0 for i < j - t. 0 

7. The second syzygy 

In this section, the base ring R is assumed to be a field of characteristic p, unless 
otherwise specified. Let id,: F’ + F, X = {x1 < . . . < x,} and X’ = {x; > . . > x;) 

be as in Section 5. S = S(S2F) g R[xi x Xj]l 5, s j s ,,, and I, are as in the previous 
section. We set the ith graded Betti number at degree j dimR [Tory(S/Z,, S/S+)lj of S/Z, 

by /I,“,. The ith Betti number Cj fit is denoted by Pf. The purpose of this section is to 
prove 

Theorem 7.1. Zf p = 3, n 2 11, and t = 3, then we have /?fj, b > 0. 

Proof. Thanks to the isomorphism (3.1), it suffices to show that H2(Y3’6(idF)) # 0 
when n = rank F 2 11. Let us consider the filtration {M,,,),,,=, of Y3s6(idF). By 
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Lemma 3.7, the filtration induces a spectral sequence converging to H,(.Y3*6(idF)) 
whose E’ term is of the form 

The P-term HZ&~, 3), (3, 3, ~3) idF), which corresponds to the partition A = (3,3) is 
isomorphic to the Em-term. We check this. The El-term H,(L,,,,,,,,id,) = 0 for any 

partition y such that y > A and that 111 = 6. This is a consequence of Corollary 5.2 

when I(y) = 2. When y = (6), then this is also clear, because we obtain I,(,, 3J, (6, 6) idF 
with truncating the homotopically trivial complex &&,id, at degree 6 (so that 

Hi(Lt,,,,, (6,6JidF) = 0 for i < 6). On the other hand, El- term H,(L,,,,,,,,id,) = 0 for 
any partition y such that y < ;1 and 111 = 6. In fact, such a gamma has the length at 
least three, and we can invoke Corollary 5.2 again. Thus, the El-term 

HZ(43,3), (3,3,3, 3) idF) agrees with Em-term by a formal spectral sequence argument, 
using the facts above. 

Hence, it suffices to show that H2(L(3,3j, (3,3,3, 3JidF) # 0. The complex 
Lc3,3j, (3,3,3, 3j id, is a complex of GL(F)-modules, and it decomposes into the direct 
sum 

where [ I,, denotes the weight p-component (with respect to the basis X = 

1x 1, ... , 4. 
So it suffices to show that Hz(C) # 0, where C is the weight (2,l”)-component 

Ch3, 3), (3, 3,3, 3) id& 1 10) 

of L (3,3),(3,3,3,3hb. We denote the weight (2, 1”) by w. We set c = 

C/la3,3),(3*3,3,3) idFlw so that C = d(,,,,,, 3j((?). We denote the set 

{SEROW>(~,~).(~,~,~,~)W~X’, WI ~49 = 0, v,C% W = ~1 

by & where 

w(S) = (Wl(S),W2(S), ... >W?m) 

is the vector given by wi(S) = vN (S, {xi, xi}). We also set 

B, = B”,nSt(3,3,3,3)(xux’, x7. 

The set B, (resp. B,) is a basis of c, (resp. C,). 
We define a linear form K: c, + R as follows. For an element SE B2, we define: 

1. If vl,,,)(S, {xi)) < 2, the_” i(S) = 0. 
2. If v{~) (S, X’) = 2, then h_(S) = 0. 
3. If v(,}(S, X’) = 2, then h(S) = 0. 
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4. If none of the above holds, then S is of the form 

1 a(2) o(3) 

1 o(4) 0) 

S = o(6) o(7) la(R)) 

a(9) a(lO) ( 41) 1 

for some (unique) oEAut {2, . . . ,111 2 Glo, where in the expression of S, the 
number i denotes Xi, and framed q denotes xi. We define i(S) = (- 1)” E R. 

The linear form g which satisfies l-4 above exists uniquely. 
We show that h” induces the linear form h : C2 -+ R. By Lemma 3.5 and [ 13, Lemma 

7.51, the kernel of the map d,,. 3,3,3): c, + Cz agrees with CT=, XT=, Eij, where 

Eij = q Fifjj13,3, (~Irli.jr,.uii,i,.l,iii,j,id,j 
0 

for i, j = 1,2,3, here p(i j) denotes the row-sequence (3,3,3,3) + jgi. Let 

TE U ROw~(,(i,j)l,p(i,j)2),P(irj)(XuX’,X’) 
i. j 

be of weight o (i.e., vN (T, {Xi, xi}) = wi). The image of T by the box map can be 

expressed as 

q 0,3,3,3)(7-) = 1 GS, km = i 1, Sm~Row~3,3.3.3)(XuX’, X’)). 

m=1 

If there is some m such that h”(S,) # 0, then by definition of h”, T must be one of the 
following: 

1 o(2) a(3) a(4) 

1 o(2) o(3) 

o(4) a(5) ~(6) 

T3,1@) = l 
46) 

DUO) 

g(4) c(5) 

g(7) g(8) 

1 a(2) a(3) a(4) a(5) 

1 a.) d3) 

T,, 2(o) = 
~(5) a(6) ~(7) 

o(9) dl0) pm-1 

1 CQ) a(3) 

T,,,@) = l 
a(4) a(5) 

~(6) ~(7) 06) o(9) (a01 

(ao) 
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;) 
1 a(2) g(3) 

1 a(4) o(5) 
1 a(2) a(! 

U,.,(o) = 
__ , \ 1 ,a\ ,? 

a(6) a(7) a(8) (0 , 

dll) 
g(b) (J( 

whereaEAut(2, . . . , 1 l}. As the characteristic of R is three, a straightforward compu- 
tation will show that the tableaux above are mapped to zero by h”o q (3,3,j,3j. Thus, 
K induces h : C2 + R. 

Next, we show that h induces a map H,(C) + R. As HZ(C) = Z,(C)/&(C), where 
Z,(C) = Ker anC, and B2(C) = Im anC,, it suffices to show that h 0 8 vanishes on 
C3. To verify this, we take a tableaux T E &, and prove h”((aT) = 0. By definition of 
h”(the condition 3), we may assume that vfdl (T, X’) = 2. If vN(T, {x1}) = 0, then dT is 
a linear combination of tableaux S, such that vN(S, {x1}) I 1, and it is clear that 
&(aT) = 0. So we may assume that vN(T, {x1)) 2 1. First we consider the case vN(T, 

{x1)) = 2. Then, as T is standard of weight w, T looks like 

1 o(2) a(3) 1 a(2) a(3) 

1 a(4) a(5) 1 
T= 

44) 45) 

a(6) 47) Ja(8) Or 
T= 

46) 47) 4) 

49) m 41) j a(9) a(lO) a(l1) 

for some a E Aut {2,, . . . , ll}. A straightforward computation will show that this is 

annihilated by Ro d. 
Next, consider the case vN(T, {x1}) = 1. Then, T is of the form 

1 a(2) a(3) 

T= ilil, (,fl, fi 

for some aEAut(2, . . . , 1 l}. Again by a straightforward computation (using that the 

characteristic is three), we see that h”(d( T)) = 0 in R. So h induces t’?: H,(C) -+ R. 

To prove that H,(C) # 0, it suffices to show that h# 0. We consider the element 

A=a 

It is obvious that AEZ~(C). On the other hand, a straightforward computation will 
-- 

show that h(A) = 1. Hence, we have h(A) # 0, where A denotes the class of A in 

Hz(C). 0 
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Remark 7.2. It is known that py,j = 0 unlessj = t + 2 [16]. Hence, by the theorem, 
we have & > /3& = 0 when t = 3 and II 2 11. So the third Betti number p3 of S/Z, 
depends on characteristic of the base field in this case. 

Corollary 7.3 (cf. Andersen [2, Corollary 5.4.21). Let us consider the base ring R = Z, 

the ring of integers. If n 2 11, then there is no minimal free resolution of S/Is, where we 

say thut ajnitefree S-complex IF is minimal when the boundary maps of IF OS S/S, are 

zero maps. 

Proof. The existence of such an IF would imply that the all Betti numbers of S/I, were 
independent of the field, because k 0i2 IF would be the minimal free resolution of 

k On S/I, for any filed k. 0 
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